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Asymptotic solutions describing the onset of convection in rotating, self-gravitating
Boussinesq fluid spheres with no-slip boundary conditions, valid for asymptotically
small Ekman numbers and for all values of the Prandtl number, are derived. Central
to the asymptotic analysis is the assumption that the leading-order convection can be
represented, dependent on the size of the Prandtl number, by either a single quasi-
geostrophic-inertial-wave mode or by a combination of several quasi-geostrophic-
inertial-wave modes, and is controlled or influenced by the effect of the oscillatory
Ekman boundary layer. Comparisons between the asymptotic solutions and the
corresponding fully numerical simulations show a satisfactory quantitative agreement.

1. Introduction

The problem of thermal convection in rapidly rotating, self-gravitating, internally
heated Boussinesq fluid spheres is characterized by three physical parameters: the
Rayleigh number R, the Prandtl number Pr and the Ekman number E. Motivated
by geophysical and planetary physical applications, which are usually characterized by
extremely small Ekman numbers (E <107°) and moderately small Prandtl numbers
(0 < Pr<0(1)), the convection problem in rapidly rotating spherical systems has
been extensively studied (see, for example, Chandrasekhar 1961; Roberts 1968 ; Busse
1970; Soward 1977; Zhang 1995; Tilgner & Busse 1997; Jones, Soward & Mussa
2000; Christensen 2002; Dormy et al. 2004; Chan, Li & Liao 2006). A review article
by Busse (2002) gives further references on the earlier studies of the problem. The
present paper represents an attempt to derive asymptotic solutions in rotating fluid
spheres with the no-slip velocity boundary condition, valid for 0< Pr/E < oo at an
asymptotically small E.

It is important to note that there are no general asymptotic scalings for F <1
appropriate to all values of Pr/E in rotating spheres with no-slip boundary conditions.
For an arbitrary small but non-zero E, the asymptotic scalings R.= O(E'?),
m.= 0(1) are valid in the limit Pr/E — 0 (Zhang 1995), where R. denotes the critical
Rayleigh number and m. is the corresponding azimuthal wavenumber at the onset of
convection. In the opposite limit Pr/E — oo the asymptotic scalings at leading order
in rotating no-slip spheres are given by R.= O(E~'3), m.= O(E~'?) (Dormy et al.
2004). The asymptotic scalings in terms of small E, which dramatically simplify the
mathematical analysis of the problem (see, for example, Roberts 1968; Busse 1970;
Jones et al. 2000; Dormy et al. 2004), do not exist in the general asymptotic solutions
for 0< Pr/E < oo, implying that the general problem must involve solutions of the
full partial differential equations in spherical geometry.
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Our asymptotic solutions in rotating no-slip spheres for 0< Pr/E <o at E<K1,
following the method developed for stress-free spheres (Zhang & Liao 2004), are based
on the three hypotheses: (i) the convective flow is quasi-geostrophic; (ii) the leading-
order velocity can be represented by either a single quasi-geostrophic-inertial-wave
(QGIW) mode or by a combination of QGIW modes for which explicit analytical
expressions are available (Zhang et al. 2001); and (iii) there exists a strong Ekman
boundary layer on the bounding spherical surface that either controls (when Pr is small
or moderate) or modifies (when Pr is moderately large) the interior convective flow.

The three hypotheses and the related asymptotic analysis are closely associated with
the underlying physics and dynamics of convection in rapidly rotating no-slip spheres:
a single inviscid QGIW mode or several inviscid QGIW modes which are modified
by viscous effects, mainly via the Ekman boundary layers at the spherical bounding
surface, and which are energetically driven by thermal buoyancy against viscous
dissipation. The unanswered mathematical question regarding the completeness of
the inertial wave modes, raised by Greenspan (1968), is irrelevant to the present
asymptotic analysis. The result of our asymptotic analysis not only confirms the
proposed structure of the convective flow for 0 < Pr/E < o0 at E < 1 but also offers
a natural bridge between two previously disjoint problems in rotating fluids: thermal
convection and inviscid inertial waves.

2. Mathematical formulation and numerical analysis

Consider a Boussinesq fluid sphere of radius r, with constant thermal diffusivity «,
thermal expansion coefficient « and kinematic viscosity v. The fluid sphere rotates
uniformly with a constant angular velocity £ in the presence of its own gravitational
field, —y r, where y is a positive constant and r is the position vector. The whole sphere
is heated by a uniform distribution of heat sources (see, for example, Chandrasekhar
1961; Roberts 1968; Busse 1970; Soward 1977; Jones et al. 2000), producing the
unstable conducting temperature gradient —8r, 8 being a positive constant. The
problem of thermal convection is then governed by the three dimensionless equations

ou

§+u-Vu+2k><u:—Vp+R@r+EV2u, (2.1)

(Pr/E) (a;) + u-V@)) =u-r+ V0O, (2.2)
Veu=0, (2.3)

where k is a unit vector parallel to the axis of rotation, ® represents the deviation
of the temperature from its static distribution, p is the total pressure and u is the
three-dimensional velocity field, u = (u,, uy, uy) in spherical polar coordinates (r, 6, ¢)
with unit vectors (7, 0, (]3). We have employed the radius of the sphere r, as the length
scale, 1/£2 as the unit of time and Br?$2/«k as the unit of temperature fluctuation ©.
The three non-dimensional parameters, the Rayleigh number R, the Prandtl number
Pr and the Ekman number E, are defined as
aByr? v v
R = or Pr—K, E_.Qrf'

The rigid, no-slip boundary with fixed temperature assumed in this paper gives rise
to the conditions

U =ug=uy, =60 =0 atr=1. (2.4)
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The amplitude of convection is assumed to be sufficiently small to neglect the nonlinear
terms. The corresponding linear equations describing the onset of convection, subject
to the boundary conditions (2.4), will be solved numerically for a spherical shell with
a small inner core as well as asymptotically (E < 1) for the full sphere.

The primary purpose of the fully numerical analysis, valid for any value of the
Ekman number E, is to compare with the asymptotic solutions valid only for E < 1.
In the numerical simulations, we expand the velocity u as a sum of poloidal (v) and
toroidal vectors (w)

u=[VxVxrorb,¢)+V xrwrb,o)e ", (2.5)

where o is the half-frequency. We then solve the three independent non-dimensional
scalar equations,

{EV2 +2(1 —n) <88¢ — io,?)]Vzv +2(1 —n)*2w— (1 —n)°R¥O =0, (2.6)

[EV2 +2(1 —p)? (aa(p — io;ﬂﬂ w—2(1—7n)*20 =0, (2.7)

[EV? —2i(1 — )’ Prl® + E4v =0, (2.8)

where 75 is the ratio of the inner sphere radius (r;) to the outer sphere radius (r,),
n=r;/r,, and the differential operators . and 2 are defined as

a , 90

L=Vt —r'—,  2=kV-NZLkV+Ek VL)
ar or

In the numerical simulations the inner sphere is set to be sufficiently small, giving

n=0.01 to facilitate its comparison with the full sphere. The boundary conditions

(2.4) concerning v, w and © in a spherical shell are

ov n 1
V=—=w=0=0 at n=——, 1,=
(I—n) (I—n)

= . (2.9)

We then solve the governing equations by expanding the velocity potentials and
temperature in terms of spherical harmonics (P/"(cos8)e™?) and of radial functions
that satisfy the no-slip boundary condition,

I+n 2 1+n\ ., -
w 2%:11.)1;1 |:1_ (21’—1)7) :|Tn (27’—1_” P[ (COSG)C s (210)

292
v="> u, {1 - (Zr - 14”7) ] T, <2r _ 1“) P"(cos@)e™®,  (2.11)
—-n

-1
Ln
1+77 ’ 1+77 m im
e = ;@ln |:1 — (2}’— 1—7]) :|Tn <2F—H7 Pl (COS@)C ¢’ (212)

where T,(x) denotes the standard Chebyshev function. The spherical harmonics are
normalized,

1 2n T )
an ), /0‘le(cose)e"""’|2sin9d9d¢=1,

and wy,, v, ), are complex coefficients to be determined numerically. The fully
numerical solutions obtained for various Prandtl numbers at E < 1 will be discussed
later together with the corresponding asymptotic solutions.
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3. Asymptotic solutions for F <1

In rapidly rotating spheres with the no-slip conditions, an asymptotic solution u
of convection can be separated at leading order into the interior flow u, and the
Ekman-boundary-layer flow u,, i.e. u=uq + u, (see, for example, Greenspan 1968).

We first look at the interior convective flow uy. The hypotheses for the asymptotic
solution at E < 1 lead to an expansion for the velocity uy and the pressure pg in the
form

uy = Z Cn(Uy +iiy) e,  py= ZCN(PN + pw) e, (3.1)
N N

where Cy are complex coefficients, #iy and py denote the interior perturbations
induced by the flux from the oscillatory Ekman boundary layer, o is the half-frequency
of convection and Uy, Py represent a QGIW mode satisfying

2(iUNUN+kXUN)+VPN=0, V‘UN=0, (32)
which are subject to 7-Uy =0 at r =1. Also, Uy has the equatorial symmetry
(Ung, Unr, Uno)(0) = (Ung, Uy, —Upg) (T — 6), (3.3)

and is nearly independent of r cosé (i.e. quasi-geostrophic with |oy| < 1, except for
the case Pr/E < 1) and described by a polynomial of degree 2N. Explicit expressions
for all U y and some typical values of oy, as well as the equation for the determination
of all oy, can be found in Zhang et al. (2001). At the edge of the spherical Ekman
boundary layer, the radial component of the interior flow ug is characterized by

Frug=O(E'?), (34)

which is needed for asymptotic matchings for the general asymptotic solution.
We then look at the oscillatory Ekman boundary flow u, on the spherical bounding
surface. For a sufficiently small E, the Ekman boundary flow u, is governed by

LOpy O my

2iaub+2k><ub—r 85 = 8%‘2 s

(3.5)

where & represents the stretched boundary-layer variable, &£ = E=Y2(1 —r), for E < 1:
& =0 is at the bounding no-slip surface and & — oo defines the edge of the Ekman
boundary layer. The above equation can be reduced to a fourth-order differential
equation for u, (see, for example, Kudlick 1966),

? .\ R
(agz — 210> u, +4(k-#Yu, =0, (3.6)

which can be solved subject to four boundary conditions. The first two boundary
conditions are on the no-slip surface at £ =0,

[r x wle—o + ) Cwlr x Unl,-1 =0, (37)
N
82ub . ANA
7% +) " 2Cx[ioUy + (k- #)F x Uyl,— = 0. (3.8)
§=0 N

The other two are at the edge of the Ekman boundary layer flow, evaluated at & = oo,

A A |:azllb

[F X #p)s=0, = 0, 8&‘2] - =0. (3.9)
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A straightforward but cumbersome analysis shows that the leading-order boundary-
layer solution on the bounding no-slip spherical surface is given by

; ’
= =50 Co | B+ B)exp(zi) + 2 1~ Drexi i) | explin +i201). (3.10)
N

+ 0).
Z;:—|:1+(O—N_COS):|‘/O'N‘_“COSQ|,

1
|oy £ cos 0|

ijmN [O’I%;_l(l . O,I%I)J—l Slnm+2j 10 COSZ:—I 9]

On
X [—on(m+moy +2joy)cos* 0 —2i (1 —oy) sin® 0 £ oy(m + moy + 2j) cosb],
with C;j,n being defined as
o CDYRN 4t j+m)— 1]
N 521 — D)IN —i — j)iljWm + j)
where n!l=n(n —1)...12)(1), 2n — DH!'=2n — 1)2n — 3)...(3)(1), and Qp is the

normalization factor
N N—i N N—k

va = Z Z Z Z 2j+[+m71CiijCklmNUf,(Hk*l) (1 _ 01%/)/‘+1—1

i=0 j=0 k=0 (=0

(m4+j+1—1)12i +2k—3)!
2m+j+I+i+k)+1)!!

X 2loy +moy +m)+ (2j + moy +m)(2l + moy +m)(2i + 2k — 1)], (3.11)

[8ik(m + j+1)(1—oy) +ox(2joy +moy +m)

which is chosen such that (|[Uy|?>) =1, { ) denoting the volume integral over the
sphere. Obviously, the solution for the spherical Ekman boundary layer (3.10) is not
determined at this stage because of the undetermined coefficients Cy in the expression.
It should also be noted that the boundary-layer solution breaks down at the critical
latitudes 6. = cos~! oy, ie. the Ekman boundary layer would be locally thickened
at the critical latitudes. However, the local thickening of the Ekman layer does not
appear to affect significantly the leading-order global solution in a full sphere (see,
for example, Hollerbach & Kerswell 1995; Zhang 1995) and we shall neglect the
local-thickening effects on the asymptotic convection solutions.

An asymptotic convection solution, described by the Rayleigh number R, the half-
frequency o and the coefficients Cy, is determined by matching the interior solution
uy to the boundary-layer solution u;, at the edge of the Ekman boundary layer.
Substituting (3.1) into the momentum equation, multiplying the result by U),, the
complex conjugate of U, making use of the boundary-layer solution (3.10) and
integrating the resulting equation over the sphere, we obtain a system of algebraic
equations for Cy, R and o:

Cyi(c —oy) + Z CN(EF un — RGun)
N

K B 0 aP
:_TcEl/Z ZCN N |:(O'N+COS ) +1:| (SlneM_mPM>d9
m 0 /|oy +cosf| [ loy + cosO a0

(3.12)
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for M=1,2,3,.... Here & yy is related to the internal viscous dissipation and
given by

?MN=<VXU3,['VXUN>
N N—i M M—k

=YY S e S St g1 (1 - o) (1 - )
N M

i=0 j=0 k=0 =0

[—D)(2i +2k—3)!!
(g(;]jj +z)+(ll++k) T8Ik = Dk D+ 1) (1= 03) (1 07)

+dikoyoy[2jony + moy + m)(ZIoN + moy + m)
+(2j + moy +m)(2l + moy +m)|(2i + 2k — 3)},

Py, describes the pressure distribution at the edge of the Ekman boundary layer,

M M—i

Py = Z Z 2C,j”’M H(1—oy)’ ' sin" % 0 cos™ 0,

i=0 j=0
and ¥,y represents the thermal effect of convection
{gMN = <U;,1 . r@)
_ Z (E&L —ioPr) Uy - r P ji(Eur)) (Un - r P ji(&ur))
2 (B2} + 02 Pr?) jiy 1 ()
where ji(§4r) are the spherical Bessel functions with &, being chosen such that

JiE)=0and 0 < & < &, < &3.... In deriving (3.12), we have made an assumption
that in

’

(U3, - Vug) = ZCNVXU V><UN>+/U;4-[(V><u0)><?]dS (3.13)

N

the surface integral on the right-hand side, in comparison to the preceding volume
integral, can be neglected. For prescribed values of E,m, Pr, (3.12) can be readily
solved to determine the values of R, o and the complex coefficients Cy, N=1,2,3...,
describing the onset of convection in rotating no-slip spheres. The smallest Rayleigh
number, denoted by a subscript ¢, represents the critical or most unstable mode of
convection in a rapidly rotating no-slip sphere.

In the limit Pr/E — 0, (3.12) becomes particularly simple because different QGIW
modes are completely decoupled. In this case, the summation in (3.12) reduces to a
single equation with one QGIW mode Uk and the half-frequency oy, leading to

E'? "o, (oxk+cost) (. 3Pk '
_ 12 g
|:TE/ BK |GK n COSQ|3/2 (Sln@ 30 mPK> do + E /KK:| , (314)

T B+
a:aK_El/Zn[ ( PR mPK>d0} (3.15)

v/|okg + cos 6]

Minimization of R over different QGIW modes, with various values of K and m,
yields the critical parameters describing the most unstable mode in rapidly rotating
no-slip spheres when Pr/E < 1. In this case, it is found that the onset of convection
obeys the asymptotic relations,

m.=1, R.=E'?(8.868 x10*+1.033 x 10°E'?), 0.=0.755040.2177E"?,
(3.16)
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while other QGIW modes give rise to larger Rayleigh numbers and thus are not
preferred. For instance, the QGIW mode with m =2, K =1 and o7 =0.6160 results in

m=2, R=E"?(1.298x10°+1.915x10*E"?), 0.=0.6160+0.2020E"/%,

(3.17)
The asymptotic relations can be compared with the corresponding fully numerical
simulations at Pr=0 for different values of E. At E=10"% the asymptotic
solution (3.16) gives R.=9.90, 0. =0.757 while the fully numerical analysis yields
R.=9.42, 0. =0.756. At the smaller Ekman number E = 10~>, the asymptotic solution
(3.16) gives R, =2.91, 0. =0.756 while the fuller numerics yields R, =2.90, 0. =0.755.
A satisfactory agreement between the asymptotic relations (3.16) and the direct
numerical solution has thus been achieved. Moreover, the explicit analytical
convection flow in a rotating no-slip sphere for Pr/E <1 can be written in the
complex form

u, = isin @[> — 1]el@*20), (3.18)

Uy = {[1 —2r? — gr¥(cos® 6 — sin? 0)] — [(1 — cos )

X (—1 — g(cos? 6 — sin*6)/2) + 2g sin® 6 cos 0]
x e=ZE” (1 4 cos0)(—1 — g(cos® 6 — sin®6))/2
—2gsin® 6 cosfle! A E 1/2} i(§+2010) (3.19)

Uy = {[(2—g)r2 —1]cos® — [(1 —cosb)

X (—1 — (cosze — sin®#))/2 + 2g sin’ 6 cos 6]
x eI=nZIET? | [(1 + cos@)(—1 — g(cos> 6 — sin’ 0))/2
— gsin? 6 cos@le A ET }161("’“"”), (3.20)

where the abbreviation g = #,/10 — 3 has been used and

1 2 (U]+COSQ) 1/2
=-[1+2¢/Z] =0 Zi=— |1+ ——+
ol 3 ( + \/;> 0.7550, Z; { + o1 £ cos | ] |oy £+ cosf|

When Pr increases from the limit Pr/E — 0, equation (3.12) suggests several important
effects. When Pr/E < 1, the term relating to the Ekman boundary layer, proportional
to E'/? on the right-hand side of (3.12), plays an essential role in controlling the
behaviour of convection. In the limit Pr/E — oo, the term relating to the internal
viscous dissipation, proportional to E on the left-hand side of (3.12), plays a leading
role (see, for example, Jones et al. 2000; Dormy et al. 2004). However, generally
speaking, all the terms in (3.12) are important when Pr is not within the asymptotic
limits. It is also expected that more than one QGIW mode would be excited and
sustained by thermal convection because the viscous effect, measured by a non-zero
Pr in (3.12), couples a dominant QGIW mode with the neighbouring QGIW modes
having frequencies close to that of the dominant mode.

For given values of E and Pr, we can calculate various convection modes by
solving (3.12) with a Newton—Raphson iterative procedure to determine the critical
mode corresponding to the smallest Rayleigh number R,. Table 1 shows two sets of the
critical Rayleigh number R, the corresponding wavenumber m, and half-frequency o,
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Pr (Re, me, 0c)FNUM (R, m¢, 00) 061w
0.001 (23.74, 2, —0.1064) (22.14, 2, —0.1095)
0.01 (36.50,2, —0.0927)  (35.42,2, —0.0957)
0.05 (74.45, 4, —0.0466) (74.65, 4, —0.0458)
0.1 (95.34, 5, —0.0394) (94.17, 5, —0.0390)
0.25 (143.3, 6, —0.0269) (140.8, 6, —0.0272)
0.7 (226.7,7,—0.0145)  (225.7,7, —0.0155)
1.0 (258.6, 7, —0.0108) (257.9,7,—0.0114)

TABLE 1. The critical Rayleigh numbers R,, the preferred wavenumbers m, and half-frequencies
o. at the onset of convection at E =10"* for various Prandtl numbers. The fully numerical
solutions in a rotating spherical shell with a small inner sphere at r;/r, =0.01 are indicated by
the subscript FNUM while the asymptotic solutions in a sphere by the subscript QGIW.

FiGure 1. Contours of ug in the equatorial plane for three different Prandtl numbers at
E=10"*: (a, d) for Pr=10"2, (b, e) for Pr=10"", and (c, f) for Pr=1. The upper panels
show the fully numerical solutions in a rotating spherical shell with a small inner core while
the lower panels show the asymptotic solutions in a rotating sphere.

obtained at E = 10~* for various values of Pr. The second set (with subscript QGIW)
is obtained from the asymptotic solutions in the full sphere and the first set (with
subscript FNUM) is calculated from fully numerical simulations in a spherical shell
with a small inner core, showing a satisfactory agreement between the asymptotic
and fully numerical solutions for all values of Pr/E. Figure 1 illustrates the typical
structure of convection for three Prandtl numbers, Pr=0.01,0.1, 1.0, obtained from
both the asymptotic solutions and numerical simulations, revealing nearly the same
features.

The coefficients |Cy| and their corresponding half-frequencies oy for the dominant
QGIW modes are presented in table 2. Note that the degree of the polynomial
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(1, 1.000, —0.1160)
(2, 0.443, —0.0509)
(3,0.130, —0.0288)

(3, 1.000, —0.0435)
(2,0.972, —0.0689)
(4,0.628, —0.0303)
(1,0.286, —0.1316)
(5,0.242, —0.0224)
(2,0.121, 4+0.3146)
(3,0.117, 40.2569)

(N, |Cyl, o) for Pr=10"2 (N,|Cy|, o) for Pr=10"" (N, |Cy|, oy) for Pr=1

(3, 1.000, —0.0473)
(4, 0.880, —0.0339)
(2,0.665, —0.0719)
(5,0.512, —0.0257)
(3,0.229, +0.2229)
(4,0.193, +0.1921)
(2,0.172, 40.2690)

(6, 0.159, —0.0202)
(5, 0.125, +0.1694)

TaBLE 2. Dominant coefficients |Cy| and the corresponding half-frequencies oy derived from
(3.12) for three convection solutions with three Prandtl numbers, Pr=0.01,0.1, 1, at E =107
Smaller coefficients with |Cy| < 0.1 are not shown.

for a QGIW mode Uy is 2N. At Pr=0.01, the convection is dominated by a single
QGIW mode (a polynomial of degree 2) with N =1, o0y =—0.116 and modified mainly
by two QGIW modes with N =2, 0,=—0.051 and N =3, 03 =—0.0288. When the
Prandtl number increases to Pr=0.1, the asymptotic solution becomes dominated
by the two QGIW modes with N =3, 03 =—0.0435 (with a polynomial of degree 6)
and N =2, 0, =0.0688 (with a polynomial of degree 4). It is important to note that
the viscous coupling of different QGIW modes causes the spiralling structure of
convection illustrated in figure 1. At Pr=1.0, the chief dominant QGIW modes are
shifted to N =3, 4, 2 with the critical azimuthal wavenumber m.=7. By inserting the
values of the coefficients Cy given in table 2 into (3.1) for the interior flow #, and into
(3.10) for the boundary-layer flow u,, we obtain an approximate explicit asymptotic
solution of convection (ug + u;) in a rotating sphere satisfying the no-slip conditions
(2.4).

4. Summary and remarks

We have presented asymptotic solutions for E < 1 in rotating spheres with no-slip
boundary conditions. The asymptotic analysis hinges primarily on the assumption
that the leading-order velocity of convection can be represented, dependent on the
size of the the Prandtl number, by either a single QGIW mode or by a number of
QGIW modes, and is either controlled or modified by the Ekman-boundary-layer flux.
We found a satisfactory agreement between the asymptotic and the direct numerical
solutions for E < 1 and a wide range of Prandtl numbers. More fundamentally, our
asymptotic solutions point to the underlying structure and dynamics of convection in
rapidly rotating no-slip fluid spheres.

A potentially important advantage of the current asymptotic approach is that it may
be readily extended to include the effect of compressibility, because the problem of
inertial waves in rotating compressible fluids can be reformulated under the anelastic
approximation (Busse, Zhang & Liao 2005). We can re-write the equations for the
velocity &y of compressible convection under the anelastic approximation in the form

d (potto)
ot

where py represents the density distribution depending on r only. The relationship
between the internal convection solutions in the Boussinesq fluid (#y) and in the

+ 2k X (poito) + Vpo =0, V- (poitg) =0, (4.1)
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compressible fluid (@) is then simply given by

wo(r,0,¢,1) = et (4.2)

1
u0(7,0,¢,l) = m

1
CyU
po(r) zN: e

For a given py(r), the asymptotic analysis can be carried out in a similar way to that
in this paper. Of course the analysis would be much more complicated and lengthy
and the values of the critical Rayleigh number and other parameters will be modified
by the compressible effects.

K. Z. is supported by PPARC, NERC and Leverhulme grants and X. L. is supported
by NSFC grant/10633030. Computation is supported by Shanghai Super Computer
Centre.
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